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Abstract

We present a Conforming Delaunay Triangulation (CDT)
algorithm based on maximal Poisson disk sampling.
Points are unbiased, meaning the probability of introduc-
ing a vertex in a disk-free subregion is proportional to its
area, except in a neighborhood of the domain boundary.
In contrast, Delaunay refinement CDT algorithms place
points dependent on the geometry of empty circles in in-
termediate triangulations, usually near the circle centers.
Unconstrained angles in our mesh are between 30◦ and
120◦, matching some biased CDT methods. Points are
placed on the boundary using a one-dimensional maximal
Poisson disk sampling. Any triangulation method produc-
ing angles bounded away from 0◦ and 180◦ must have some
bias near the domain boundary to avoid placing vertices
infinitesimally close to the boundary.

Random meshes are preferred for some simulations, such
as fracture simulations where cracks must follow mesh
edges, because deterministic meshes may introduce non-
physical phenomena. An ensemble of random meshes aids
simulation validation. Poisson-disk triangulations also
avoid some graphics rendering artifacts, and have the blue-
noise property.

We mesh two-dimensional domains that may be non-
convex with holes, required points, and multiple regions
in contact. Our algorithm is also fast and uses little mem-
ory. We have recently developed a method for generating
a maximal Poisson distribution of n output points, where
n = Θ(Area/r2) and r is the sampling radius. It takes
O(n) memory and O(n log n) expected time; in practice
the time is nearly linear. This, or a similar subroutine,
generates our random points. Except for this subroutine,
we provably use O(n) time and space. The subroutine
gives the location of points in a square background mesh.
Given this, the neighborhood of each point can be meshed
independently in constant time. These features facilitate
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parallel and GPU implementations. Our implementation
works well in practice as illustrated by several examples
and comparison to Triangle.
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Figure 1: Two random CDTs with the same radius and
domain.

1 Introduction

Many applications in computational geometry begin by
constructing a Delaunay triangulation of a set of points
scattered in a given domain. Triangles in a Delaunay
triangulation have circumcircles that do not contain any
other vertices, and have desirable geometric shape. If the
domain is non-convex or contains internal edges, the tri-
angulation must respect the boundaries of the domain.
Constrained Delaunay triangulations contain the required
edges, and a triangle’s circumcircle contains no point visi-
ble to the triangle’s vertices. Covering triangulations [28]

add interior points to improve triangle angles, but con-
straint edges and vertices limit the improvement. In
a Conforming Delaunay Triangulation (CDT), constraint
edges are subdivided as well, greatly improving mesh qual-
ity. Each constraint edge is a union of triangle edges, and
triangles are constrained Delaunay. CDT is important in
many fields such as interpolation, rendering, and mesh
generation. Well-shaped meshes of well-spaced points have
many useful properties [27].

A very effective family of CDT algorithms is based on
Delaunay refinement: start with a coarse mesh, and in-
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Figure 2: Top, a non-convex fracture domain with a hole.
Bottom, a seismic domain; our implementation succeeded
despite the user selecting a coarser mesh size than the
theory requires.

sert a point at the center of large Delaunay circumcir-
cles. We contrast and bridge our method to the root of
this family’s tree, Chew [8]. Since Chew’s seminal pa-
per, Delaunay refinement has been generalized in many
ways. The most relevant generalization for us is that new
points do not need to be at the exact center of a De-
launay circle; indeed our work shows they can be placed
randomly, as long as they are far enough away from prior
points. Off-centers [37] inserts a point between the cen-
ter and a short edge; it reduces the total number of in-
serted points by implicitly grading the mesh size. It also
improves numerical stability. In three-dimensions, nearly-
planar tetrahedra can be avoided by perturbing points.
This can be done randomly [9] or deterministically [14].
This can be done symbolically or with actual coordinates
or the Voronoi weights [6]. Randomly inserting a point,
say within a smaller circle concentric with the Delaunay
circle, reduces the bias.

Parallel Delaunay refinement is possible. The points
used to fix different simplices will interfere with one an-
other, but this can be resolved by only inserting the non-
conflicting points, and taking multiple passes [34].

In any event, Delaunay refinement inserts biased points;
an unbiased process selects a new point outside the (con-
stant) radius r disk of any other point, but is otherwise
chosen uniformly at random from the remaining disk-free
area of the domain. This is also known in spatial statis-
tics [4] as the hard-core Strauss disc processes with inhibi-
tion distance r1 and disc radius r2, where for us r1 = r2.

The limiting distribution is called a maximal Poisson-disk
sample (MPS) in graphics.

The probability of inserting a point at a given location is
independent of the location. For Delaunay refinement the
insertion probability depends on intermediate properties
of the algorithms, such as the order in which bad-angle
triangles are addressed and the DT angles and circle cen-
ters. The bias may be difficult to understand, describe,
or predict, although spectrum analysis of pairwise dis-
tances can measure bias. Unbiased points have spectra
with the “blue noise” property. Unbiased sampling algo-
rithms have a long history in computer graphics relating to
image synthesis, including applications in anti-aliasing [22]

and Monte Carlo methods for ray tracing, path tracing,
and radiosity [38].

Random meshes are useful in several contexts. The effects
of mesh structure on modeling fracture in solid mechan-
ics was studied in detail in the 1990’s; see Bolander and
Saito [3] for a thorough discussion. For some finite el-
ement methods, crack propagation is limited to triangle
edges, or dual Voronoi cell edges. Structure also plays a
role for spring networks, e.g. crack formation may depend
on the orientation of the mesh with respect to the stress
field. In either method, the locations of fractures are sus-
pect if the locations of mesh points are biased. Lattice
meshes are particularly troublesome [20], as is geomet-
ric regularity arising from some adjustment procedures
such as point repulsion [36] and centroidal Voronoi tes-
selation [24]. Strain and stress rates are independent of
rotations, i.e., the physics are isotropic. For spring net-
works, mesh structure may affect the ability to model this
isotropy and reproduce uniform elasticity, independent of
fracture.

For computational science validation it may help to have
multiple meshes with nearly identical global properties,
but with local differences. Simulations results over all the
meshes can be compared, to see if the results are depen-
dent on mesh artifacts. Fracture simulations are depen-
dent, but point location variablity is considered a subset
of material property variability. Simulations over an esem-
ble of meshes are collected to generate the range of possible
experimental outcomes. Unbiased Poisson-disk sampling
is ideal for these applications; a maximal distribution helps
with angle bounds (Section 3.1) and performance [2].

The meshing literature abounds with methods for han-
dling sharp features of the domain: small input an-
gles, and edges close to non-contained vertices. Spiel-
man et al. [34] provides a parallelizable method for this
in 3d. One key idea is to isolate and mesh these fea-
tures before handling the rest of the domain [33; 32;
26]. The category of algorithms that recovers the domain
boundaries before inserting interior points can be com-
bined with this sort of preprocessing. For example, we
may do that, as can Chew [8]. Preprocessing can even be
combined with the family of methods that follows Rup-
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pert’s [29] variation that meshes (most of) the boundary
at the same time as the interior. Cheng et al. [7] handles
sharp features near vertices in 3d with a protective ball,
and sharp angles between edges and facets are handled in
the natural course of recovering the boundary. They iso-
late lower dimensional boundary features with protecting
balls, similar to how we use the empty disks of our sampled
boundary points. Handling input boundary facets in order
of increasing dimension is common and effective. Fu [16]

samples boundary vertices, curves, then surfaces, the same
order as in our method. Fu’s [16] anisotropic remeshing
pipeline provides good triangles in practice, but without
provable angle bounds. It includes random point inser-
tion, but since it extends Dunbar and Humphreys’s [12]

advancing-front disk sampling method to surfaces embed-
ded in 3d, and does Lloyd relaxation [25], points are geo-
metrically biased.

We use a maximal Poisson-disk sampler as a subroutine.
While we prefer our earlier method [13] for generating sam-
ple points, others may be used. White et al. [40], and
Gamito and Maddock [17] are unbiased alternatives. Dun-
bar and Humphreys [12], and Wei [39] are very efficient.

Our triangulation algorithm is linear given sample points
prelocated in a uniform grid of squares. Many prob-
lems, including DT, are known to be O(n) when the
points are sorted or otherwise geometrically organized [11;
5]. Some triangulation methods use a quadtree [18] or
other background mesh to aid point location. Buchin
and Mulzer [5] use quadtrees to control point insertion,
yielding a linear Delaunay algorithm even over badly-
distributed points. Kil and Amenta [21] provide a robust
parallel-GPU implementation of a serial linear-time local
Delaunay triangulation of nicely-distributed data. This is
very similar to our setting. Kil and Amenta do some CPU
pre-processing while our GPU version does none.

1.1 Our Contribution

We present a linear CDT algorithm based on uniform ran-
dom points. Algorithm complexity and provable trian-
gle angles are similar to the best known for (biased) uni-
form Delaunay refinement CDT methods. To our knowl-
edge [1], ours is the first provably optimal algorithm based
on Poisson-disk sampling. Efficiency is achieved using lo-
cality (background grid and bounded edge lengths) and
radial sorting.

Section 3.2 and Remark 1 shows the near-equivalence of
Delaunay refinement and our MPS approach in terms of
the outcome, despite the processes being opposite. Delau-
nay refinement inserts points to reduce circumcircle radii
and as a byproduct provably produces a (biased) maxi-
mal sampling. Our method produces a maximal sampling,
and as a byproduct a provably good Delaunay mesh re-
sults. Our sampling is unbiased, but any maximal disk
sampling is sufficient for provable angle bounds. For ex-

ample, Section 3.2 may be a way to show that many prac-
tical Poisson-disk sampling methods, and many variants of
Delaunay refinement, achieve provable angle bounds sim-
ilar to Chew, because they achieve a maximal empty-disk
sampling.

Our implementation performance appears reasonable com-
pared to Shewchuk’s [30; 33] popular Triangle software.
Our typical serial running time is 2.7 seconds to trian-
gulate 1,000,000 points, plus 10 seconds to generate the
sample points. Our algorithm and Triangle take about
the same amount of time to triangulate. Triangle gener-
ates points much faster, because the points it generates
are deterministic rather than unbiased random. Our GPU
triangulation code is a 2× speedup over our serial code,
about 29% of the theoretical memory-limited speedup.

Our algorithm is modular in the sense that it may be in-
corporated into a complete mesh generation toolkit that
performs many other steps, such as preprocessing sharp
boundary features.

2 Algorithm

• Preprocess sharp boundary features.

• Protect the boundary of the domain with random
disks.

• Sample the interior of the domain, until the set of
disks is maximal.

• Triangulate the sample points.

For clarity, we describe sampling before protecting. We
analyze the algorithm in Section 3; then give implemen-
tation details for triangulating serially (Section 4) and on
the GPU (Section 5).

2.1 Maximal Poisson Sampling

Maximal Poisson-disk sampling selects random points
{xi} = X, from a domain, D. The disk of radius r for
each point contains no other points. xi is chosen from
Di−1, the remaining disk-free area of D, without prefer-
ence: the probability P of selecting a point from a subre-
gion Ω is proportional to Ω’s area. The maximal condition
means that the points’ disks cover the whole domain and
no more points can be sampled.

Bias-free: ∀Ω ⊂ Di−1 : P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X, i 6= j : ||xi − xj || ≥ r (1b)

Maximal: ∀p ∈ D,∃xi ∈ X : ||p− xi|| < r (1c)

In recent work [13], we have shown how to efficiently pro-
duce a sampling satisfying all three criteria. The main
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datastructure is a background uniform cell (square) de-
composition to keep track of the remaining uncovered area
of the domain. The diagonal of a square is r, so it can con-
tain at most one dart.

We have two phases. In the first phase, darts (vertices,
disk centers) are thrown into empty cells. If a new dart
violates (1b), it is rejected. We only need to check a con-
stant number of nearby cells. After a linear number of
dart throws, the remaining uncovered area is expected to
be small, and we switch. In the second phase, the main
innovation is to build a polygonal approximation to the
disk-free voids within cells. We weight each polygonal
void by its area. We randomly throw darts based on these
weights, which is the only non-linear step. Careful at-
tention to placing or rejecting darts within the polygonal
approximations leads to an unbiased sampling. Efficiency
arises from careful handling of when to update and recal-
culate weights. The expected run-time is O(n log n); the
log n dependence is very mild. The memory is determin-
istic O(n). The number of cells |C| = Θ(n).

For this paper we treat that algorithm as a black-box that
produces both the sample points and the cells containing
them. We also rely on the ability of the black-box to accept
some prescribed sample points on the domain boundary,
and then generate the rest of the points needed to achieve
a maximal distribution.

2.2 Preprocess sharp features

We assume sharp vertices have been protected by prepro-
cessing using one of the methods from the introduction.
Whether a vertex is too close to a non-containing edge
and must be preprocessed, i.e. is sharp, depends on r. Af-
ter preprocessing, what we require is that r is smaller than
any input edge; and r is small enough that when we pro-
tect the domain boundary the disks for one input edge will
not intersect another input edge, except perhaps for the
disk centered at the common vertex of the edges.

2.3 Protecting the domain boundary

Pure maximal Poisson sampling [13] may introduce ver-
tices arbitrarily close to the domain boundary. This poses
no problems for maximal Poisson sampling per se, but
would result in triangles with unbounded small and large
angles. To prevent this, we protect the domain boundary
by introducing sample points exactly on the boundary, or
at least some distance from the boundary. The disks of
these samples cover a neighborhood of the boundary, pre-
venting the introduction of points that could create trian-
gles with bad angles. The price is introducing a sample
bias near the boundary.

We follow the simple but effective methods of Chew [8].
The main idea is to place a single dart at each vertex, and
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Figure 3: (a) A dark-blue random disk covering the inte-
rior intersection point of the blue circles covers the forbid-
den red region.

then protect edges by maximally placing random darts
along them.

It is easy to space disks between r and 2r apart. However,
disks between

√
3r and 2r apart do not overlap enough to

protect the boundary. We have two solutions: close-disks
and interior-disks.

2.3.1 Protecting with close-disks

It is also easy to space boundary disks between
√

3r/2
and

√
3r apart. This results in some boundary r-disks

containing each other’s centers, and an angle lower bound
of arcsin

√
3/4 ≈ 25.6◦ instead of 30◦. The quality and

timing results given for the implementation are for this
strategy.

2.3.2 Protecting with interior-disks

See Figure 3(a). We may preserve the property that r-
disks do not contain each other’s centers and obtain a 30◦

angle bound by following the approach of Chew [8]: pro-
tect long (>

√
3r) edges by introducing a disk centered

in the interior. Let a and b be consecutive samples on a
boundary edge, and Ca and Cb their r-radius disks. Con-
sider a circle with chord ab. The Central Angle Theorem,
Figure 3(b), says the chord subtends the same angle for
any point on the arc of the circle on one side of ab. The
angle only depends on the circle radius. Any point in-
side the circle makes an even larger angle with ab. After
protecting the boundary, only interior points are added;
we will generate a covering triangulation of the protected
boundary. The angle that a constraint edge makes with a
visible point is a lower bound on the maximum angle in
any covering triangulation, regardless of additional points
or choice of triangulation edges [28]. So we cannot place
any samples inside the 120◦ circle for ab, C120◦ . Part of
C120◦ is already covered by Ca and Cb, and we seek to
cover the remainder with an interior disk.

A natural choice is centering a disk at the midpoint of the

arc
_

ab of C120◦ ; instead of C120◦ Chew uses the circle of
points making 90◦ angles with ab. We actually have a lot
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more freedom than this; see Figure 3(a). Circles Ca and
Cb intersect exactly once on the domain-interior side of
ab. We show in Section 3.3 that it is sufficient to place
a disk anywhere covering that intersection point, as long
as the disk center is outside Ca, Cb and C120◦ . Such a
disk covers the remaining forbidden region inside C120◦ .
Random disk placement reduces the bias, and improves
fracture mechanics simulations by varying the angle be-
tween boundary and interior edges.

2.4 Triangulate

Our cell structure enables a local, simple, and fast algo-
rithm for constructing the constrained Delaunay triangu-
lation, CDT. We shall see in Section 3 that the length of
CDT edges are bounded by 2r. This ensures that for any
point, the other points of its star are all in nearby cells.
The number of nearby cells is constant, so the number of
sample points they contain are bounded by that constant.
Thus, we may construct the star of every point in constant
time, using any of the standard constrained Delaunay al-
gorithms, in linear total time.

While divide and conquer is known to be the fastest serial
algorithm, for effective parallelism we use an algorithm
based on the locality of points. Radial sorting is particu-
larly efficient on GPUs. Our square background grid helps
with efficiency. Details are given starting in Section 4.

3 Analysis of the algorithm

3.1 Angle bounds

Here we show that the algorithm produces triangle angles
between 30◦ and 120◦, or 25.6◦ and 124.4◦. The results
are nearly the same as Chew [8] but the proofs, i.e. the
reasons the results hold, are reversed. We ignore triangles
containing the vertex common to two input edges or other
sharp vertices, as their quality depends on the details of
the preprocessing step.

Exterior- interior-center triangle. A CDT T =
4v1v2v3 with circumcenter c is an exterior-center trian-
gle iff v1c crosses v2v3 and a constraint edge ab, and is an
interior-center triangle otherwise. C is the circumcircle
and R the circumradius.
Lemma 1. Interior-center triangles have R ≤ r.

Proof. c ∈ D so c is covered by radius-r Poisson disks.
{vi} are its closest visible points.

Lemma 2. Exterior-center triangles have R ≤ r (close-
disks) or R ≤ 2r/

√
3 (interior-disks).

Proof. No constraint edge can cross an edge of T . No con-
straint edge vertex can be in C and visible to v1. Hence ∃

2r 

r 
120° 30° 

90° 

60° 30° 

r 
3r30° 

(a) Interior 4.

a 

2!
c 

!

!

!

b 

v 

3r

2 R = r

r

(b) Min-angle on bdy.

a 

b 

v c 120°

R =
2r

3

30°

30°

2r

(c) Max-R on bdy.

Figure 4: (a) Extreme cases for interior triangles. (b)
Boundary 4vab with |ab| =

√
3r/2, |bv| = r, and R = r:

∠v = γ = arcsin
√

3/4; α = ∠a = 30◦; β = ∠b = 150◦ −
arcsin

√
3/4 < 124.4◦. (c) Boundary 4vab with |ab| = 2r,

∠v = 120◦ and R = 2r/
√

3.

constraint edge ab crossing arc
_
v2v3 twice and crossing v1c,

with ab∩C visible to v1. By the Central Angle Theorem,
∠acb = 2(180◦ − ∠av1b). ∠av1b ≤ 120◦ by construction,
hence ∠acb ≥ 120◦, and R = |v1c| ≤ |ab| cot 60◦.

Lemma 3. CDT edges e have length r ≤ |e| ≤ 2r
(interior-disks) or

√
3r/2 ≤ |e| ≤ 2r (close-disks).

Proof. No visible sample points are closer than r or
√

3r/2
to each other. For an interior-center triangle, edge lengths
are at most the circumcircle diameter. For an exterior-
center triangle, v2v3 is its longest edge and |v2v3| ≤ |ab|.

These Lemmas are nearly the same as the conclusion of
Chew’s [8] Theorem 1, although the construction leading
to the proof of the circumcircle radius condition is differ-
ent: Chew’s algorithm inserts the centers of large circles
leading to a tight packing of points, while we insert tightly-
packed points leading to no large circles.

Chew’s Corollary to his Theorem 1 follows for the interior-
disks strategy.
Corollary 1 (Chew’s Corollary). (1) CDT angles are be-
tween 30◦ and 120◦. (2) |e| ≤ 2r.
Corollary 2 (close-disk angles). For the close-disks strat-
egy CDT angles are between arcsin

√
3/4 > 25.6◦ and

150◦ − arcsin
√

3/4 < 124.4◦.

Figures 3(b) and 4 outline the proofs and show that the
angle and edge length bounds are tight. Recall we exclude
the analysis of triangles with two constraint edges. For
interior-disks, the smallest circumradius occurs for a tri-
angle with edge lengths r-r-r: R ≥ r/

√
3; for close-disks

r-r-
√

3r/2 gives R ≥ 2r/
√

13.
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strategy angle edge length circumradius

min max min max min max

interior-disks 30◦ 120◦ r 2r 0.577r 1.155r
close-disks 25.4◦ 124.4◦ 0.866r 2r 0.555r r

3.2 Triangulations and maximal sam-
plings

We observe the near-equivalence of maximal disk sam-
plings and good triangulations. An epsilon-net is a point
set satisfying (1c); see Haussler and Welzl [19] for a full
definition.
Lemma 4. The vertices of any triangulation with bounded
circumcircle radii ≤ r forms an epsilon-net for circles with
ε = r, regardless of Delaunay property, angle bounds or
smallest edge length.

Proof. If the triangulation is Delaunay, then this follows
from Delaunay-Voronoi duality: Delaunay circle centers
are the vertices of convex Voronoi cells. But the Delaunay
property is not required, as the Voronoi diagram for a
single triangle shows that every point p inside 4xyz is
within distance r of one of its vertices.

Remark 1. If additionally all vertices are at least r from
each other, then the vertices are a maximal sampling with
radius r satisfying properties (1b) and (1c).

A Delaunay triangulation with all edge lengths at least
r has this property, because the nearest neighbor graph
is a subgraph of the DT edge graph. In particular, the
points of Chew’s algorithm (and variants) are a maximal
sampling.

3.3 Geometry of Protecting the Boundary

Here we prove that we have a lot of freedom in placing
interior-disks protecting the boundary. Let a and b be con-
secutive boundary-edge samples, and label the construc-
tion as in Figure 5. Let n be the interior point of intersec-
tion between Ca and Cb. Let region F be the points in the
domain outside Ca and Cb making angles 120◦ or greater
with ab. ∠anb = α > 120◦ because we only protect “long”
edges, those with |ab| >

√
3r.

Theorem 3. Any r-disk Cx covering n covers all of F .

Proof. Let point q = Cb ∩C120◦ and point t = Ca ∩C120◦

on the interior side of ab. WLOG assume x is closer to a
than b, hence closer to t than q. The lemmas that follow
prove that x is also closer to q than n. The ideas are that

x lies above
−→
bt , which in turn lies above the perpendicular

bisector of nq. (“Above” means on the opposite side of
the line as a.) So all the vertices n, q, and t of F lie inside
Cx. One side of F is non-convex, but Cx intersects C120◦

s x 

n 

a b m 

q t 

! 
" # 

d = |ab| 

T = |tb| 

S = |st| 

120° circle 

interior disk centers 

      covering n 

$ 

Figure 5: Any disk Cx covering the interior intersection
point n = Ca ∩ Cb protects the boundary, as long as x
is outside Ca, Cb and the 120◦ circle of ab. Angles and
distances show that x is closer to q and t than n, so Cx

covers forbidden region F = 4ntq.

once between
_

qb and once between
_
ta, and circles intersect

at most twice, so all of F lies inside Cx.

We first show
−→
bt lies above ⊥ nq.

Lemma 5. ε ≥ β + γ/2.

Proof. Here α = ∠anb, β = ∠nba = ∠nab, γ = ∠tan =
∠qbn, and ε = ∠abt = ∠baq.

Since 4anb is isosceles β = 90◦ − α/2. Since 4atb is
a triangle and ∠atb = 120◦, β + γ = 60◦ − ε. Linearly
combining these gives β + γ/2 = 75◦ − α/4 − ε/2. So
β + γ/2 ≤ ε is equivalent to 50◦ − α/6 ≤ ε. Since 120◦ ≤
α ≤ 180◦ and 0◦ ≤ ε ≤ 90◦, we may take the sines of each
side. It remains to check sin(50◦ − α/6) ≤ sin ε.

By the law of sines over 4tab, sin ε = r sin(120◦)/d, where
d = |ab|. Considering right triangle 4nma, we have
sin(α/2) = d/2r. So sin ε = sin(120◦)/(2 sin(α/2)). Our
check reduces to sin(50◦ − α/6) ≤ sin(120◦)/(2 sin(α/2)).

Let h(α) = sin(α/2) sin(50◦ − α/6). Our check is h(α) ≤
sin(120◦)/2. Equality holds at α = 120◦ . We now show
that h′ ≤ 0 for our range of α. h′ = cos(α/2) sin(50◦ −
α/6)/2 − sin(α/2) cos(50◦ − α/6)/6. So h′ ≤ 0 ⇐⇒
tan(50◦ − α/6) ≤ tan(α/2)/3. For α ∈ [120◦, 180◦], the
right hand side is decreasing in α and the left hand side
increasing.

Corollary 4. Any point x above
−→
bt is closer to q than n.

We now show that x lies above
−→
bt . Partition space by

the perpendicular to ab through t: halfspace Tb contains b
and a ∈ Ta. Points in Tb below the ray are inside C120◦ .
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(a) (b)

(c) (d)

Figure 6: Constructing the local CDT for p. (a) Points
sharing an edge with p must lie within a 7 × 7 template.
Cells are ordered in a spiral according to the blue curve.
Points are numbered by the order they are considered in
Step 1. (b–d) Alternative configurations after removing
points of P based on boundary constraints, and Delaunay
circles. Letters indicate the order of points in P. (b) No
constraints. (c) A nearby boundary. (d) p lies on the
boundary.

The next lemma shows that points in Ta below the ray are
either inside Ca or too far from n.

Lemma 6. |ts| = r, where {t, s} =
−→
bt ∩ Ca.

Proof. Label the construction as in Figure 5. Let T = |bt|
and S = |ts|. Recall that |ab| = d and Ca has radius r. By
the power-of-a-point theorem, (T + S)T = (d+ r)(d− r),
so S = (d2 − r2)/T − T . By the law of cosines for 4abt,
d2 = T 2 + r2 + Tr. Combining these gives S = r.

Corollary 5. Any point x within r of n is above
−→
bt .

4 Local CDT

Our CDT algorithm iterates over each point p of the max-
imal Poisson distribution, constructing its star, i.e. the tri-
angles containing it. Define the CDT-star as the triangles
containing p in a true constrained Delaunay triangulation
of the entire point set; we ensure our constructed star is a
CDT-star. Our background grid and GPU considerations
encourage a sorted-angle approach. Points in nearby cells
are our candidates Q for the star. They are inserted into
P, the vertices of the star in clockwise order around p.

Our algorithm takes three passes. In the first pass points
from Q are added to P. After this pass P contains all
the CDT-star vertices, but may also contain some extra
vertices. In the second pass these extra vertices are re-
moved based on constraints or prior points’ stars. In the
third pass extra vertices are removed based on the Delau-
nay principle. Adding and removing vertices are implicit
edge flips converting a star triangulation to a constrained
Delaunay triangulation.

4.1 Serial CDT algorithm details

We provide these details for others wishing to reproduce
or improve our results. Constrained Delaunay edges have
length≤ 2r, so only points within 2r of p are relevant to p’s
CDT-star. (We shall see below that a visibility-blocking
constraint edge will have at least one vertex within 2r as
well.) These points lie within a 7× 7 template of squares
(with corners removed), centered at the cell of p. In the
first pass we gather and sort these points q by angle around
p. To avoid any expensive square-roots, we use the slope
of pq as a surrogate for the angle. The geometric centers of
the cells of the template have a fixed sorted-order around,
and distance to, the center cell. This defines a spiral or-
dering to the cells, which speeds sorting the sample points
and other checks.

Terminology. An edge that is known to exist in the
CDT-star, either by constraints or by a prior star calcu-
lation, is a validated edge. An edge that is known to not
exist, by a prior star calculation, is an invalidated edge. An
edge that may exist is a candidate edge, and is neither val-
idated (constrained) nor invalidated. We often loop over
the points of P, sometimes circularly; let p0 be the current
point, p− the prior point and p+ the next point in P.

1. Populate P with points of Q sorted by angle around
p. Visit the cells of the spiral in order; see Figure 6(a).
When a cell contains a point qi,

(a) If |pqi| > 2r, discard qi.

(b) Find the quadrant containing qi. Insert qi into
the quadrant’s list of points, sorted by the slope
of −→pqi. If two rays have identical slope, e.g. both
of them lie on an input edge, discard the point
farther from p.

(c) If qi contains a constrained edge, ensure its other
vertex a is added to a quadrant, even if a is far-
ther than 2r from p. (This edge may be used in
Step 22a, and is needed for correctness in Sec-
tion 4.2.)

Concatenate the quadrants’ sorted lists to form P.

2. Remove vertices of P based on (in)validated edges.
Consider each p0 ∈ P.

(a) If p0pk is validated but p0 and pk are not consec-
utive in P, then remove pj , 0 < j < k, whenever
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ppj crosses p0pk.

(b) If p0p is invalidated, remove p0. Mark any vali-
dated pp0.

(c) Remove domain boundaries in connected compo-
nents of the domain intersected with the radius
2r circle centered at p other than p’s component:
if p0 lies on a one-sided domain boundary, and p
is in the exterior, remove p0. Here the exterior is
defined locally by the cone of the two consecutive
boundary edges containing p0.

Checking neighboring stars is relatively expensive be-
cause it involves chasing a lot of edges.

3. Remove vertices of P based on geometry. Check De-
launay at p0.

(a) If p0p is a candidate edge and p0 is located out-
side the circumcircle of 4p−p+p, remove p0 and
recheck p−. (Incircle test, edge flip.)

When p0 is removed we must recursively recheck the
prior point p−. In the natural iteration we will check
the subsequent point p+. This corresponds to a chain
of edge flips in the incremental Delaunay algorithm.
We must keep checking until all consecutive triples of
points have been checked and none removed.

The star of p are validated edges when subsequently run-
ning the local CDT algorithm for nearby points. This
breaks ties consistently for four or more cocircular points.
Any other potential edge with p is invalidated.

4.1.1 Implementation performance details

A quadrant is defined by the two straight lines with slope
±1 passing through p. Let δx be the x-coordinate of q− p
taken as vectors; δy is analogous. In Step 1 finding the
quadrant takes only two subtractions, two absolute val-
ues, and two comparisons. Depending on the quadrant,
we use δx/δy or its reciprocal as the slope, and sort as-
cending or descending. Computing slope requires only one
division. The number of points in a quadrant is small, so
maintaining sorted order is fast. It might be possible to
further optimize Step 1. For example, the cells could be
re-ordered so that the next point is more likely to be at
the end of a sorted list. But as described the run-time of
the first pass is already smaller than the other passes. For
GPUs, sorting by angle is a fast primitive, so we use that
instead of the quadrants and slopes.

In Step 2 we check the N neighbors of p0 for validated
edges. This check dominates the run time. (N ≤ 14 from
the minimum angle in the CDT.) For the run-time of
Step 3, we bound the number of Delaunay checks. There
are |P| < 45 initial triples of consecutive points. Every
point that is removed generates two new triples that must
be checked. So there are at most 3|P| checks. Together
these two steps take O(N |P|) time.

For Delaunay circle checks, we use Shewchuk’s [31] “in-
circle” primitive. For determining when edges cross, in-
stead of Shewchuk’s “orientation” primitive we use our
own based on triangle area because the known sorted or-
der allows us a small shortcut. We use a fixed-length array
for P. To minimize memory movement, instead of actu-
ally removing points from the array, we mark them as
“removed” using an ancillary array.

4.2 Correctness

The main arguments behind the correctness of our CDT
algorithm are that the constructed star is a CDT of the
retained points, and no discarded point is in p’s CDT-star
(the star of p in a true CDT).
Theorem 6. On termination, P are the vertices of the
star of p in a CDT of the entire domain.

Proof. By Lemma 7 we start with a superset of the CDT-
star of p. Lemma 8 shows that removed vertices are not in
the CDT-star of p. Lemma 9 shows that the algorithm pro-
duces the CDT of the remaining vertices and constrained
edges. This CDT is a proper subset of the CDT of the en-
tire domain by the Delaunay principle, and by observing
all relevant constraints.

Lemma 7. After Step 1, P contains all the vertices of the
CDT-star of p, plus perhaps some extra vertices.

Proof. Trivial. By Corollary 1, CDT edge lengths are at
most 2r, so only points inside the template are in the CDT-
star of p.

Lemma 8. Removed vertices are not in p’s CDT-star.

Proof. Any p0 discarded by constraints in Step 2 is obvi-
ously not in the CDT. It remains to consider discarding
p0 based on geometric criteria in Step 3. p0 is discarded iff
pp0 is not in the Delaunay triangulation of p−, p0, p+ and
p, and pp0 is not validated. The only way pp0 could be
in a CDT but not a DT is if some constraint edge passes
through4pp−p+. WLOG we must consider two cases, the
possibility of a constraint edge ab crossing (1) pp− and (2)
p−p+ but not pp−.

Case 1: Consider the 2r-circle centered at p, 2Cp. If a
or b is in 2Cp, then Step 2 would have removed p− before
Step 3. Otherwise, show next that angle and edge length
bounds imply the existence of some other vertex in 2Cp

with constraint edges that would have removed p−.

See Figure 7 and Mitchell [28]. Let ab be the closest con-
straint edge to p− crossing pp− with no vertex in 2Cp. Let
a′ and b′ be the intersection of ab with 2Cp, and p′− the
intersection of −−→pp− with 2Cp.

By the Central Angle Theorem, ∠a′pb′ = 2α and
∠a′p′−b

′ = 180◦ − α. α = arcsin (|a′b′|/(4r)) <
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Figure 7: Illustrations for the proof of Lemma 8.

arcsin (|ab|/(4r)). By Corollary 1 |ab| < 2r, so ∠a′p′−b
′ ex-

ceeds 120◦. (Regardless of using the close-disks or interior-
disks strategy.)

Let v be the vertex in 4p−a′b′ closest to a′b′; perhaps
v = p−. Consider the CDT of the convex hull of the in-
put domain, which is a proper superset of the CDT of the
domain. In this larger triangulation, consider the triangle
U containing v and a subset of −→vp; perhaps U = 4avb. U
has angle at v in excess of 120◦, and so must be exterior
to the domain. Since ab was chosen to be the closest con-
straint edge, no constraint edge crosses −→vp inside4avb. So
v is on the boundary of the domain, and its constrained
domain-boundary edges would have removed p− in Step 2.

Case 2: The remaining case is ab crosses p−p+ but no
constraint edge crosses pp− or pp+. One of a or b lies in-
side4pp−p+. If ab crosses pp0 then pp0 is not in the CDT;
otherwise WLOG a is the closest point visible to all of pp0,
and a lies inside4pp−p0. The Delaunay check showed that
the circumcircle of 4pp−p0 contained p+, hence the cir-
cumcircle of 4pap0 also contains p+. Since no constraint
edge crosses pp+ or pp0, let c be the vertex in 4pp+p0
closest to and visible to pp0; c might be p+. Then a, c, p0,
and p are mutually visible, and the circumcircle of 4pap0
contains c, which invalidates pp0 .

Lemma 9 (clean-up is flipping). After Step 3, P defines
the CDT of the vertices of P ∪ p and any constraints.

Proof. Constraints: All constraint edges between p and
p0 are respected due to Step 22b. All constraint edges
between p0 and some other vertex are respected due to
Step 22a. At the start of Step 3 all points of P are visible to
p. Also, consecutive points of P are visible to each other:
no constraint edge blocks them because any such edge ei-
ther has vertices that would make them non-consecutive,
or remove one of them in Step 2. Visibility between con-
secutive points is invariant during Step 3 because any p0
with a constraint edge crossing p−p+ is inside 4pp−p+
and will not be removed by a Delaunay check.

Delaunay: Delaunay’s Theorem states that satisfying the
empty-circle property between pairs of triangles sharing an
edge is equivalent to satisfying the empty circle property

globally. Based on this, a standard Delaunay algorithm
is to take any triangulation and then flip edges to satisfy
the local Delaunay criteria, recursively checking the new
adjacent triangle pairs.

Removing vertex p0 from the star corresponds to flipping
pp0 with p−p+. Our algorithm flips recursively through
the star by iteration and backtracking on index j of p0.
The only difference between our algorithm and the stan-
dard flip algorithm is that we discard p0. This is accept-
able because we are only constructing the star of p, and
a property of the standard algorithm is that if a flip re-
moves an edge, there is a witness that the removed edge is
non-Delaunay, so no subsequent flip will every re-introduce
that edge.

5 GPU implementation

We implemented a GPU version of the CDT algo-
rithm, and also our black-box that generates the random
points [13]. We ran it on points in a square domain, which
is typical for fracture simulations. The localization pro-
vided by grid cells is central to our parallelization.

The CDT for p depends on three layers of cells, a 7 ×
7 grid (with corners removed) centered at the cell of p.
However, when generating the CDT we only change the
datastructures associated with the center cell. We may
simultaneously work on two 7 × 7 grids as long as they
do not contain each others’ center cell. Active cell centers
are offset from one another by multiples of 4 in x and
y indices; there are no race conditions between threads.
Each thread begins with a 4 × 4 grid of center cells. We
use global synchronization after each update; the cost is
equivalent to a kernel relaunch, and has minimal overhead.
There are sixteen stages, so that every cell (every p) is the
center of a 7× 7 grid in one stage. Since each thread can
now be considered independently, each thread can imitate
the serial algorithm; see Section 4.

Load balancing is achieved by having many more threads
than processors, at least for the domains and mesh sizes
of interest. The amount of work a given thread does at
each stage varies widely; e.g. threads with empty cells re-
turn immediately. However, each processor works on many
threads between global synchronization stages. In particu-
lar, there are enough memory requests to keep the DRAM
controllers busy. We also considered atomics, but that
approach appeared more complicated, and may perform
worse.

Recall we use an alternative to Step 1 because GPUs are
very fast at calculating angles due to their specialized
hardware for transcendental functions. We dispense with
quadrants and build one list directly. We gather the points
from the 7× 7 grid with distance to p ≤ 2r and add them
to P. We visit the cells in the angular order of their center
point; this results in points being in nearly-sorted order.
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Figure 8: The data points are for runs at different resolu-
tions r. For a given resolution, we plot Triangle’s maxi-
mum and minimum times. Our serial CDT is competitive
with Triangle’s median times. Our GPU CDT is about a
2× speedup over our serial CDT; the GPU memory band-
width is 6.7× the CPU’s. Our serial and GPU CDT im-
plementations show near-linear performance. Our method
and implementation for generating maximal Poisson sam-
plings (MPS) is competitive with the best for MPS; the
MPS family of methods is slower than Delaunay refine-
ment for generating points.

(This is different than the spiral order.) Then we run a
local insertion sort. The nearly-sorted order reduces data
movement. If two points have the same angle, we remove
the one farther from p.

The result is the same as the serial version, except that
we did not collect constraint edges if one of its vertices
is farther than 2r from p. We gather and sort any far
constraint edges on the fly in Step 2. This reduces total
memory access because edges are only considered once, in
Step 2 and not in Step 1. The remaining GPU and serial
steps are the same.

6 Implementation Performance

6.1 Run-time and memory

The serial implementation was tested on a laptop.1 We
ran the code over four typical fracture mechanics do-
mains: roughly-square surface patches, some non-convex,
with various combinations of holes and two-sided interior
boundary edges. These differences had little effect on the
run-time, memory, or mesh quality. As illustrated in Fig-
ure 8, we generated 100,000 random points/second and
triangulated 370,000 points/second. The sampling den-
sity had little effect: both algorithms show a near-linear

12010 vintage. Intel R© CoreTM i7-620M at 2.67 GHz, 4 MB cache;
4 GB RAM; 64-bit Windows 7 OS.
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Figure 9: CPU memory use while generating a 8,271,560
point mesh.

complexity in the number of mesh points, with only a very
slight rise.

Figure 9 demonstrates serial memory usage. The phases
of sampling and triangulating are visible. Phase II con-
sumes more memory than Phase I, because the geometric
voids are more complicated than simple squares. However,
the difference between Phase II memory and the memory
needed to store the final output is relatively small.

6.1.1 GPU performance

We ran our GPU CDT algorithm on an NVIDIATM

GeForceTM GTX 460 with 336 CUDA Cores and 1 GB
GDDR5 RAM. We triangulated 735,000 points/s, about
a 2× speedup over the serial code; see Figure 8. Since
memory bandwidth is the limiting factor, the theoretical
best speedup is about 6.7×. The memory bandwidth is
17.1 GB/s for CPU, and 115 GB/s for GPU; the ratio
is 6.7. The laptop CPU can perform 24.5 GFlops/s in
turbo mode, the GPU’s max is 907 GFlops/s; the ratio is
37. Due to GPU memory constraints, the largest mesh we
could produce had about 2 million points.

6.1.2 Comparison to Triangle

In serial we typically triangulate 1,000,000 points in 2.7
seconds, plus 10 seconds to generate the sample points
and grid. Our code is written in C++ and was compiled
under Windows. We compiled the C code for Triangle [30;
33] under Linux, but on the same hardware. Given
1,000,000 random points in the unit square, Triangle took
about the same amount of time as our code. Triangle has
an internal reporting mechanism, and it reported between
2.4–3.7 seconds, frequently taking 2.7 seconds. We do not
know why the times varied so much; the times reported
by our code did not vary more than 5%. Triangle is faster
when it generates its own point cloud; a local deterministic
process vs. our global random one. There are differences in
problem definition; the language, compiler and OS; scala-
bility; and what constitutes difficult input; but this shows
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Figure 10: Observed angles and edge lengths for a 1E6-
point triangulation of the square. The angle histogram
uses 2.5◦ bins. The edge-length histogram uses 1/30 width
bins.

that our serial codes are close. Our GPU code is a 2×
speedup over our serial code.

6.2 Triangulation quality

Poisson sampling leads to Delaunay triangulations with
angles following a particular distribution [10; 23]. This
distribution is fairly independent of the number of samples
and even the shape of the domain; see Figures 10 and
11. Most angles, 80%, lie between 40◦ and 80◦, which is
good for many applications. The edge length distribution
also tends to be invariant; see Figure 11. The observed
angle and edge extremes are consistent with the theoretical
bounds. Other properties, such as edge-valence, have also
been studied in the spatial statistics literature [15].

Tournois et al.’s Figure 2 [35] gives a plot of the angles for
a typical Delaunay refinement algorithm, and refinement
interleaved with smoothing. We see in Figure 10 that the
distribution of angles in our random mesh has roughly the
same shape as in Delaunay refinement. Theirs appears
more jagged than ours, although this may be an artifact
of the histogram widths or sample size.

7 Conclusion

In summary, we described a new method for generating a
Conforming Delaunay Triangulation in two dimensions.

• Points are generated randomly, including points on
the boundary. Point locations are unbiased, except
near the boundary.

• Run-times are as good as the Delaunay refinement
algorithms for triangulating, but not for generating
points.

• Angles are as good as many Delaunay refinement al-
gorithms.

• Points are generated in O(n) space and E(n log n)
time.

• Points are triangulated in O(n) time and memory.

• The method is naturally parallelizable.

0.1

0.2

0.3

0.4

Fr
ac
ti
on

Internal Triangle Angles
1E6 points

1E5 points

1E4 points

1E3 points

1E2 points
0.1

0.2

0.3

0.4

Fr
ac
ti
on

Internal Edges 1E6 points

1E5 points

1E4 points

1E3 points

1E2 points

0.3

0.4
Boundary Triangle Angles

1E6 points

i

0

0.1

Angle Range (degrees)

1E3 points

1E2 points

0.3

0.4 Boundary Edges 1E6 points

1E5 points

0

0.1

Length Ratio to r

0

0.1

0.2

0.3

Fr
ac
ti
on

Boundary Triangle Angles
1E6 points

1E5 points

1E4 points

1E3 points

1E2 points

0

0.1

0.2

0.3

Fr
ac
ti
on

y g
1E5 points

1E4 points

1E3 points

1E2 points

0

Angle Range (degrees)

0

Length Ratio to √3r/2

Figure 11: Example distributions for the square, by num-
ber of points, n. About 4

√
n of the points are on the

boundary. One sample run each. A boundary edge is a
constrained edge. For any triangle containing a boundary
edge, all three of its angles are boundary triangle angles;
one of the angles may be at a vertex internal to the do-
main.

Random meshes can help in situations where mesh struc-
ture is a concern. Random meshes help validate the results
of fracture propagation simulations, and avoid graphics
rendering artifacts. The method works on planar straight-
line graphs, including non-convex domains with internal 2-
sided boundaries (cracks) and 1-sided boundaries (holes).

Empirical results are that the CDT can triangu-
late 374,000 points/second on a CPU, and 735,000
points/second on a GPU. The speed scales very well with
the problem size. The output quality is largely invariant
to the domain, and unconstrained angles are provably be-
tween 30◦ and 120◦, or 25.6◦ and 124.4◦.

We plan to extend the algorithm to higher dimensions.
The current Poisson-disk sampling procedure is based on
a constant disk radius; if this is relaxed, graded meshes
that are unbiased may be possible.

Discrete algorithms are notoriously difficult to parallelize
effectively. Their random memory access patterns (e.g.
chasing chains of mesh edges) does not take good advan-
tage of the hardware memory hierarchy. The GPU mem-
ory bandwidth is about 6.7× the CPU’s; the 2× achieved
speedup is a start. We intend to try exploiting locality in
the 7× 7 grids, perhaps using shared memory.
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